The G2/M DNA damage checkpoint inhibits mitosis through Tyr15 phosphorylation of p34cdc2 in Aspergillus nidulans.

نویسندگان

  • X S Ye
  • R R Fincher
  • A Tang
  • S A Osmani
چکیده

It is possible to cause G2 arrest in Aspergillus nidulans by inactivating either p34cdc2 or NIMA. We therefore investigated the negative control of these two mitosis-promoting kinases after DNA damage. DNA damage caused rapid Tyr15 phosphorylation of p34cdc2 and transient cell cycle arrest but had little effect on the activity of NIMA. Dividing cells deficient in Tyr15 phosphorylation of p34cdc2 were sensitive to both MMS and UV irradiation and entered lethal premature mitosis with damaged DNA. However, non-dividing quiescent conidiospores of the Tyr15 mutant strain were not sensitive to DNA damage. The UV and MMS sensitivity of cells unable to tyrosine phosphorylate p34cdc2 is therefore caused by defects in DNA damage checkpoint regulation over mitosis. Both the nimA5 and nimT23 temperature-sensitive mutations cause an arrest in G2 at 42 degrees C. Addition of MMS to nimT23 G2-arrested cells caused a marked delay in their entry into mitosis upon downshift to 32 degrees C and this delay was correlated with a long delay in the dephosphorylation and activation of p34cdc2. Addition of MMS to nimA5 G2-arrested cells caused inactivation of the H1 kinase activity of p34cdc2 due to an increase in its Tyr15 phosphorylation level and delayed entry into mitosis upon return to 32 degrees C. However, if Tyr15 phosphorylation of p34cdc2 was prevented then its H1 kinase activity was not inactivated upon MMS addition to nimA5 G2-arrested cells and they rapidly progressed into a lethal mitosis upon release to 32 degrees C. Thus, Tyr15 phosphorylation of p34cdc2 in G2 arrests initiation of mitosis after DNA damage in A. nidulans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Checkpoint defects leading to premature mitosis also cause endoreplication of DNA in Aspergillus nidulans.

The G2 DNA damage and slowing of S-phase checkpoints over mitosis function through tyrosine phosphorylation of NIMX(cdc2) in Aspergillus nidulans. We demonstrate that breaking these checkpoints leads to a defective premature mitosis followed by dramatic rereplication of genomic DNA. Two additional checkpoint functions, uvsB and uvsD, also cause the rereplication phenotype after their mutation a...

متن کامل

Essential roles for calcium and calmodulin in G2/M progression in Aspergillus nidulans

nimT encodes a protein in Aspergillus nidulans that is required for tyrosine dephosphorylation of p34cdc2 and has a strong homology to cdc25-type proteins. Conditional mutation of nimT (nimT23 mutation) arrests cells in G2 at the restrictive temperature. After release of the temperature-sensitive nimT23 block, p34cdc2 undergoes tyrosine dephosphorylation and we showed that as cells entered mito...

متن کامل

Regulation of G2/M Transition by Inhibition of WEE1 and PKMYT1 Kinases.

In the cell cycle, there are two checkpoint arrests that allow cells to repair damaged DNA in order to maintain genomic integrity. Many cancer cells have defective G1 checkpoint mechanisms, thus depending on the G2 checkpoint far more than normal cells. G2 checkpoint abrogation is therefore a promising concept to preferably damage cancerous cells over normal cells. The main factor influencing t...

متن کامل

Chk1 is a wee1 kinase in the G2 DNA damage checkpoint inhibiting cdc2 by Y15 phosphorylation.

The G2 DNA damage checkpoint ensures maintenance of cell viability by delaying progression into mitosis in cells which have suffered genomic damage. It is controlled by a number of proteins which are hypothesized to transduce signals through cell cycle regulators to delay activation of p34cdc2. Studies in mammalian cells have correlated induction of inhibitory tyrosine 15 (Y15) phosphorylation ...

متن کامل

A single p34cdc2 protein kinase (encoded by nimXcdc2) is required at G1 and G2 in Aspergillus nidulans.

We have cloned and sequenced a homolog of cdc2 from Aspergillus nidulans that can complement the Schizosaccharomyces pombe cdc2-33 mutation. The gene was deleted and is required for continued nuclear DNA replication but not for mitochondrial DNA replication. Three different temperature-sensitive alleles were generated by reverse genetics. All of the mutations generate the nim phenotype of A. ni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 16 1  شماره 

صفحات  -

تاریخ انتشار 1997